
2

Reading and Writing Data

2.1 Reading Vectors and Matrices

The c function has already been introduced as a way to input small amounts
of data into R. When the amount of data is large, and especially when typing
the data into the console is inappropriate, the scan function can be used.
scan is most appropriate when all the data to be read is of the same mode,
so that it can be accommodated by a vector or matrix. For reading data with
variables of mixed modes, see Section 2.2.

The first argument to scan can be a quoted string or character variable
containing the name of a file or a URL, or it can be any of a number of
connections (Section 2.1) to allow other input sources. If no first argument is
given, scan will read from the console, stopping when a completely blank line
is entered.

By default, scan expects all of its input to be numeric data; this can be
overridden with the what= argument, which specifies the type of data that
scan will see. For example, to read a vector of character values with scan,
you can specify what="":

> names = scan(what="")
1: joe fred bob john
5: sam sue robin
8:
Read 7 items
> names
[1] "joe" "fred" "bob" "john" "sam" "sue" "robin"

When reading from the console, R will prompt you with the index of the next
item to be entered, and report on the number of elements read when it’s done.

If the what= argument to scan is a list containing examples of the expected
data types, scan will output a list with as many elements as there are data
types provided. To specify numeric values, you can pass a value of 0:

14 2 Reading and Writing Data

> names = scan(what=list(a=0,b="",c=0))
1: 1 dog 3
2: 2 cat 5
3: 3 duck 7
4:
Read 3 records
> names
$a
[1] 1 2 3

$b
[1] "dog" "cat" "duck"

$c
[1] 3 5 7

Note that, by naming the elements in the list passed through the what= argu-
ment, the output list elements are appropriately named. When the argument
to what= is a list, the multi.line= option can be set to FALSE to prevent
scan from trying to use multiple lines to read the records for an observation.

One of the most common uses for scan is to read in data matrices. Since
scan returns a vector, a call to scan can be embedded inside a call to the
matrix function:

> mymat = matrix(scan(),ncol=3,byrow=TRUE)
1: 19 17 12
4: 15 18 9
7: 9 10 14
10: 7 12 15
13:
Read 12 items
> mymat

[,1] [,2] [,3]
[1,] 19 17 12
[2,] 15 18 9
[3,] 9 10 14
[4,] 7 12 15

Notice the use of the byrow=TRUE argument. This allows the vector to be
converted to a matrix in the way that such data is usually presented.

In order to skip fields while reading in data with scan , a type of NULL can
be used in the list passed to the what= argument. Suppose we have a large
data file with ten numeric fields on each line, but we only need to read the
contents of the first, third, and tenth fields. We could use a call to scan as
follows:

> values = scan(filename,
+ what=c(f1=0,NULL,f3=0,rep(list(NULL),6),f10=0))

2.2 Data Frames: read.table 15

Since a value of NULL will not be replicated by rep, multiple NULL values are
added as lists, and the c function properly integrates them into the list passed
to scan. Once the file is read in this way, a matrix with the extracted fields
could be constructed with the cbind function:

result = cbind(values$f1,values$f3,values$f10)

2.2 Data Frames: read.table

The read.table function is used to read data into R in the form of a data
frame. read.table always returns a data frame, which means that it is ide-
ally suited to read data with mixed modes. (For data of a single mode, like
numeric matrices, it is more efficient to use scan.) read.table expects each
field (variable) in the input source to be separated by one or more separa-
tors, by default any of spaces, tabs, newlines or carriage returns. The sep=
argument can be used to specify an alternative separator. (See Section 2.3 for
convenience functions designed for comma- or tab-separated data.) If there
are no consistent separators in the input data, but each variable occupies
the same columns for every observation, the read.fwf function, described in
Section 2.4, can be used.

If the first line in your input data consists of variable names separated by
the same separator as the data, the header=TRUE argument can be passed to
read.table to use these names to identify the columns of the output data
frame. Alternatively, the col.names= argument to read.table can specify
a character vector containing the variable names. Without other guidance,
read.table will name the variables using a V followed by the column number.

The only required argument to read.table is a file name, URL, or connec-
tion object (See Section 2.1). Under Windows, make sure that double back-
slashes are used in pathnames, since a single backslash in a character string in
R indicates that the next character should be treated specially. If your data is
in the standard format as described above, that should be all that read.table
needs, with the possible addition of header=TRUE. However, read.table is
very flexible, and you may sometimes need to make adjustments using the
features described below.

Because it offers increased efficiency in storage, read.table automatically
converts character variables to factors. This may cause some problems when
trying to use the variables as simple character strings. While this can usu-
ally be resolved using the methods discussed in Chapter 5, you can prevent
conversion to factors by using the stringsAsFactors= argument. Passing the
value FALSE through this argument will prevent any factor conversion. To in-
sure that character variables are never converted to factors, the system option
stringsAsFactors can be set to FALSE using

> options(stringsAsFactors=FALSE)

16 2 Reading and Writing Data

The as.is= argument can be used to suppress factor conversion for a subset
of the variables in your data, by supplying a vector of indices specifying the
columns not to be converted, or a logical vector with length equal to the
number of columns to be read and TRUE wherever factor conversion is to be
suppressed. You may notice a speedup in reading your data if you suppress
some or all of the factor conversion, at the cost of increased storage space.

The row.names= argument can be used to pass a vector of character val-
ues to be used as row names to identify the output and which can be used
instead of numeric subscripts when indexing the data frame. (See Section 6.1.)
An argument of row.names=NULL will use a character representation of the
observation number for the row names.

read.table will automatically treat the symbol NA as representing a miss-
ing value for any data type, and NaN, Inf and -Inf as missing for numeric
data. To modify this behavior, the na.strings argument can be passed a
vector of character values that should be interpreted as representing missing
values.

By default, read.table will treat any text after a pound sign (#) as a com-
ment. You can change the character used as a comment character through the
comment.char= argument. If your input source doesn’t contain any comments,
setting comment.char=’’ may speed up reading your data.

For locales which use a character other than the period (.) as a deci-
mal point, the dec= argument can be used to specify an alternative. The
encoding= argument can be used to interpret non-ASCII characters in your
input data.

You can control which lines are read from your input source using the
skip= argument that specifies a number of lines to skip at the beginning of
your file, and the nrows= argument which specifies the maximum number of
rows to read. For very large inputs, specifying a value for nrows= which is close
to but greater than the number of rows to be read may provide an increase
in speed.

read.table expects the same number of fields on each line, and will re-
port an error if it detects otherwise. If the unequal numbers of fields are due
to the fact that some observations naturally have more variables than oth-
ers, the fill=TRUE argument can be used to fill in observations with fewer
variables using blanks or NAs. If read.table reports that there are unequal
numbers of fields on some of the lines, the count.fields function can often
help determine where the problem is.

read.table accepts a colClasses= argument, similar to the what= ar-
gument of scan, to specify the modes of the columns to be read. Since
read.table will automatically recognize character and numeric data, this
argument is most useful when you want to perform more complex conversions
as the data is being read, or if you need to skip some of the fields in your
input connection. Explicitly declaring the types of the columns may also im-
prove the efficiency of reading data. To specify the column classes, provide
a vector of character values representing the data types; any type for which

2.4 Fixed-Width Input Files 17

there is an “as.” method (See Section 1.3) can be used. A value of "NULL"
instructs read.table to skip that column, and a value of NA (unquoted) lets
read.table decide the format to use when reading that column.

2.3 Comma- and Tab-Delimited Input Files

For the common cases of reading in data whose fields are separated by commas
or tabs, R provides three convenience functions, read.csv, read.csv2, and
read.delim. These functions are wrappers for read.table, with appropri-
ate arguments set for comma-, semicolon-, or tab-delimited data, respectively.
Since these functions will accept any of the optional arguments to read.table,
they are often more convenient than using read.table and setting the ap-
propriate arguments manually.

2.4 Fixed-Width Input Files

Although not as common as white-space-, tab-, or comma-separated data,
sometimes input data is stored with no delimiters between the values, but
with each variable occupying the same columns on each line of input. In cases
like this, the read.fwf function can be used. The widths= argument can be a
vector containing the widths of the fields to be read, using negative numbers
to indicate columns to be skipped. If the data for each observation occupies
more than one line, widths= can be a list of as many vectors as there are
lines per observation. The header=, row.names=, and col.names= arguments
behave similarly to those in read.table.

To illustrate the use of read.fwf, consider the following lines, showing the
10 counties of the United States with the highest population density (measured
in population per square mile):

New York, NY 66,834.6
Kings, NY 34,722.9
Bronx, NY 31,729.8
Queens, NY 20,453.0
San Francisco, CA 16,526.2
Hudson, NJ 12,956.9
Suffolk, MA 11,691.6
Philadelphia, PA 11,241.1
Washington, DC 9,378.0
Alexandria IC, VA 8,552.2

Since the county names contain blanks and are not surrounded by quotes,
read.table will have difficulty reading the data. However, since the names
are always in the same columns, we can use read.fwf. The commas in the
population values will force read.fwf to treat them as character values, and,

18 2 Reading and Writing Data

like read.table, it will convert them to factors, which may prove inconvenient
later. If we wanted to extract the state values from the county names, we might
want to suppress factor conversion for these values as well, and as.is=TRUE
will be used. Assuming that the data is stored in a file named city.txt, the
values could be read as follows:

> city = read.fwf("city.txt",widths=c(18,-19,8),as.is=TRUE)
> city

V1 V2
1 New York, NY 66,834.6
2 Kings, NY 34,722.9
3 Bronx, NY 31,729.8
4 Queens, NY 20,453.0
5 San Francisco, CA 16,526.2
6 Hudson, NJ 12,956.9
7 Suffolk, MA 11,691.6
8 Philadelphia, PA 11,241.1
9 Washington, DC 9,378.0
10 Alexandria IC, VA 8,552.2

Before using V2 as a numeric variable, the commas would need to be removed
using gsub (see Section 7.8):

> city$V2 = as.numeric(gsub(’,’,’’,city$V2))

2.5 Extracting Data from R Objects

While previous sections have discussed working with data stored in built-in
classes, R provides two mechanisms for developers to define their own classes,
so it’s important to understand how data is stored in such objects. The class
mechanisms in R provide some of the features of object-oriented program-
ming, namely, method dispatch and inheritance. Method dispatch allows R
to examine the class of the arguments to a function, and to invoke a special
version of the function designed for that class of object. Not all functions in
R provide method dispatch; the ones that do are known as generic functions.
Inheritance allows developers to create new classes that are similar to other
classes; only methods that differ from the original class need to be provided.
When an object in R inherits the properties of an already defined object,
its class attribute will be a vector containing the object’s class (in the first
position), along with the classes from which it inherits.

In the first mechanism for object orientation in R, known as S3 or “old-
style” classes, method dispatch is implemented for generic functions by the
existence of a function whose name is of the form function.class. If no such
function is found in the search path, a function whose name is of the form
function.default will be invoked, and default functions exist for all the S3

2.5 Extracting Data from R Objects 19

generics. S3 generic functions can be recognized because their body consists
of a call to the UseMethod function, which actually performs the dispatch. It’s
important to recognize when generic functions are being called, because help
pages for specific method/object combinations may be available through their
“full” names. For example, the help page for the summary function doesn’t
discuss any properties of the method that will be invoked when summary is
passed an lm object; the help page for summary.lm would have to be accessed
directly. Even though you may refer to these specific methods to view their
help pages, it’s rarely if ever necessary to call them directly—they should
always be called through the generic function.

As an example, consider the lm function, which performs linear model
calculations. A object returned by this function will have class of lm; when
the object is printed or displayed, R will look for a function called print.lm,
which will display appropriate information about the linear model which was
fit. For example, the following code produces an lm object, and then displays
it through the print function:

> slm = lm(stack.loss ~ Air.Flow + Water.Temp,data=stackloss)
> class(slm)
[1] "lm"
> slm

Call:
lm(formula = stack.loss ~ Air.Flow + Water.Temp,

data = stackloss)

Coefficients:
(Intercept) Air.Flow Water.Temp

-50.3588 0.6712 1.2954

When a class is created, a set of functions to extract data from objects of
that class is usually also provided. These so-called accessor functions are the
recommended way to extract information from objects in R, since they will
provide a stable interface even if the internal structure of the object changes.
Because of the naming convention used in S3 method dispatch, the apropos
function can be used to find all the available methods for a given class:

> apropos(’.*\\.lm$’)
[1] "anovalist.lm" "anova.lm" "hatvalues.lm"
[4] "model.frame.lm" "model.matrix.lm" "plot.lm"
[7] "predict.lm" "print.lm" "residuals.lm"
[10] "rstandard.lm" "rstudent.lm" "summary.lm"
[13] "kappa.lm"

(If any functions are marked nonvisible, the getAnywhere function can be
used to see them.) Thus, to get the predicted values from an lm object, the
predict function will dispatch to predict.lm. It’s worth repeating that you
should avoid calling a function like predict.lm directly in favor of relying on

20 2 Reading and Writing Data

the generic function (in this case, predict). Also note that if an object has
multiple classes, you should look for relevant functions designed for any of the
classes from which the object inherits.

Most S3 objects are stored as lists, so if an appropriate accessor function
is not available, data can be extracted directly from the object by treating it
as a list. The first step in these cases is to use the names function to find the
available elements:

> names(slm)
[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"

Now, for example, we could find the residual degrees of freedom for the model
by extracting it directly:

> slm$df.residual
[1] 18

or

> slm[’df.residual’]
[1] 18

Since the method dispatch provided by the old-style classes is limited to
using only the first argument to the function, and since the naming con-
ventions can sometimes lead to confusion, a more formal method of defining
classes (known as “new-style” or S4 classes) has also been developed. This is
the preferred way to implement new classes in R, and will become much more
prevalent over time. Some of the functions required to work with new-style
classes are found in the methods package, so if they are not available, they
can be loaded using

> library(methods)

With S4 classes, generic functions can be identified by the presence of a
call to the standardGeneric function inside the generic function’s definition.

As an example of an S4 class, consider the mle function, used for maximum
likelihood estimation, and found in the stats4 package. We’ll simulate data
from a gamma distribution, and then use mle to estimate the parameters for
that distribution:

> library(stats4)
> set.seed(19)
> gamdata = rgamma(100,shape=1.5,rate=5)
> loglik = function(shape=1.5,rate=5)
+ -sum(dgamma(gamdata,shape=shape,rate=rate,log=TRUE))
> mgam = mle(loglik)

2.5 Extracting Data from R Objects 21

The isS4 function can be used to determine whether or not an object is using
the old-style or new-style classes:

> class(mgam)
[1] "mle"
attr(,"package")
[1] "stats4"
> isS4(mgam)
[1] TRUE

As with old-style methods the first choice for accessing information from an
S4 class should always be using the accessor functions provided along with the
function that created the object. For S4 classes, it’s easy to find the available
methods using the showMethods function (from the methods package):

> showMethods(class=’mle’)
Function: coef (package stats)
object="mle"

Function: confint (package stats)
object="mle"

Function: initialize (package methods)
.Object="mle"

(inherited from: .Object="ANY")

Function: logLik (package stats)
object="mle"

Function: profile (package stats)
fitted="mle"

Function: show (package methods)
object="mle"

Function: summary (package base)
object="mle"

Function: update (package stats)
object="mle"

Function: vcov (package stats)
object="mle"

Thus, for example, the variance–covariance matrix of the estimators is
available by using the vcov function:

22 2 Reading and Writing Data

> vcov(mgam)
shape rate

shape 0.05464054 0.1724472
rate 0.17244719 0.7228044

Naturally, the help page for the function that produced the object, as well as
additional help pages describing the class (if available), can be consulted for
additional information.

Although there is no generic print function for S4 classes, the generic
show function takes its place for printing or displaying S4 classes.

The actual entities that compose an S4 object are stored in so-called slots.
To see the available slots in an object, the showClass function can be used. If
it becomes necessary to access the slots directly, the @ operator can be used
in a fashion similar to the $ operator. Following the mle example, suppose
we wanted to retrieve the function that was used to calculate the likelihood
which was stored in mgam:

> getClass(class(mgam))
Slots:

Name: call coef fullcoef vcov min
Class: language numeric numeric matrix numeric

Name: details minuslogl method
Class: list function character
> mgam@minuslogl
function(shape=1.5,rate=5)

-sum(dgamma(gamdata,shape=shape,rate=rate,log=TRUE))

The slot function can be used if the name of the desired slot is stored in
a character variable:

> want = ’minuslogl’
> slot(mgam,want)
function(shape=1.5,rate=5)

-sum(dgamma(gamdata,shape=shape,rate=rate,log=TRUE))

For both styles of classes, some of the methods provided may create objects
containing additional information about the objects they operate on. This is
especially true for the summary method for many objects. Returning to the
lm example, we can examine what’s available through the summary method
by creating a summary object from the lm object, and examining its names:

> sslm = summary(slm)
> class(sslm)
[1] "summary.lm"

2.6 Connections 23

> names(sslm)
[1] "call" "terms" "residuals"
[4] "coefficients" "aliased" "sigma"
[7] "df" "r.squared" "adj.r.squared"
[10] "fstatistic" "cov.unscaled"

As can be seen, a number of useful quantities have been calculated through
the summary method, and are available through their named components in
the resulting summary.lm object.

2.6 Connections

Connections provide a flexible way for R to read data from a variety of sources,
providing more complete control over the nature of the connection than sim-
ply specifying a file name as input to functions like read.table and scan.
Table 2.1 lists some of the functions in R which can create a connection.

Function Data source

file Files on the local file system
pipe Output from a command
textConnection Treats text as a file
gzfile Local gzipped file
unz Local zip archive (with single file;read-only)
bzfile Local bzipped file
url Remote file read via http
socketConnection socket for client/server programs

Table 2.1. Connections

When you create a connection object, it simply defines the object; it does
not automatically open the object. If a function which accepts connections
receives a connection which has not been opened, it will always open it, then
close it at the end of the function invocation. Thus, in the usual case, you can
simply pass the connection to the function that will operate on it, without
worrying about when the connection will be opened or closed. If a connection
doesn’t behave the way you expect, or if you’re not sure if you’ve already
closed it, the isOpen function can be used to test if a connection is open; an
optional second argument, set equal to "read" or "write" can test the mode
with which it was opened.

One exception to this scheme is the case where a file is read in pieces,
for example through the readLines function. If an (unopened) connection is
passed to this function inside a loop, it will repeatedly open and close the
file each time it’s called, reading the same data over and over. To take more
control over the connection, it can either be passed to the open function, or

24 2 Reading and Writing Data

an optional mode can be provided as the second argument to the function
that created the connection. Note that in this case, the connection will not
be automatically closed; you must explicitly pass the connection to the close
function.

As an illustration of this technique, consider the R project homepage,
http://www.r-project.org/main.shtml. The latest version number of R
is displayed on that page, followed by the phrase “has been released”. The
following program opens the connection to this URL by passing a mode of
“r” for read, then reads each line until it finds the one with the latest version
number:

> rpage = url(’http://www.r-project.org/main.shtml’,’r’)
> while(1){
+ l = readLines(rpage,1)
+ if(length(l) == 0)break;
+ if(regexpr(’has been released’,l) > -1){
+ ver = sub(’</a.*$’,’’,l)
+ print(gsub(’^ *’,’’,ver))
+ break
+ }
+ }
[1] "R version 2.2.1"
> close(rpage)

The second argument to readLines specifies the number of lines to read,
where a value of -1 means to read everything that the connection provides.
Although it may seem inefficient to read only one line at a time, the actual
reads are being performed by the operating system and are buffered in mem-
ory, so that you can choose whatever number of lines is most convenient. By
using this technique, we only need to process as much of the connection as
necessary.

Note that connections can be used anywhere a file name could be passed
to functions like scan, read.table, write.table, and cat. So to write a
gzipped, comma-separated version of a data frame, we could use:

gfile = gzfile(’mydata.gz’)
write.table(mydata,sep=’,’,file=gfile)

The write.table function takes care of opening and closing the gzipped file,
since it was not explicitly opened.

A textConnection can often be useful when you need to test a function
that only operates on files. For example, in Section 2.2, the colClasses argu-
ment was introduced as a way to automatically convert data into appropriate
R objects. Suppose we want to test conversion to Date objects (Section 4.1)
using this argument. First, we create a textConnection with the kind of data
we’ll be using:

2.7 Reading Large Data Files 25

> sample = textConnection(’2000-2-29 1 0
+ 2002-4-29 1 5
+ 2004-10-4 2 0’)

Now we can use sample in place of a file name in any function that’s expecting
a file name:

> read.table(sample,colClasses=c(’Date’,NA,NA))
V1 V2 V3

1 2000-02-29 1 0
2 2002-04-29 1 5
3 2004-10-04 2 0

The unz function allows read-only access to zipfiles. Since a zipfile is an
archive, potentially containing many files, an additional argument to unz is
required to specify which file you wish to extract. For example, suppose we
have a zip file called data.zip containing several files, and we wish to create
a connection to read the file called mydata.txt into a vector with the scan
function. The following code could be used:

mydata = scan(unz(’data.zip’,’mydata.txt’))

Only one file can be extracted at a time with unz.
When you need to explicitly open a connection (either by passing a mode

to the function that creates the connection, or calling open directly), you
can specify any of the following modes: "w" for write, "r" for read, or "a"
for append. You can append a t to the end of any of these modes to spec-
ify a text connection, or a b to specify a binary connection. While there is
no distinction between text and binary on UNIX systems, on Windows it is
required to include a b anytime you want to operate on a file that has any
nonprintable characters. In addition, specifying a binary file for writing on
Windows will cause R to use UNIX-style line endings (a single newline) in-
stead of Windows-style line endings (newline plus carriage return, sometimes
displayed as control-M on UNIX systems). For more complex situations, such
as opening a file for both reading and writing, consult the help file for open.

2.7 Reading Large Data Files

Since readLines and scan don’t need to read an entire file into memory,
there are situations where very large files can be processed by R in pieces.
For example, suppose we have a large file containing numeric variables, and
we wish to read a random sample of that file into R. Of course, if we could
accommodate the entire dataset in memory, a call to sample (Section 2.9.1)
could extract such a sample, but we’ll assume that the file in question is
too large to read into R in its entirety. The strategy is to select a random
sample of rows before reading the data, and then extracting the selected rows

26 2 Reading and Writing Data

as the dataset is being read in pieces. To avoid memory allocation problems,
the entire matrix is preallocated before the reading begins. These ideas are
implemented in the following function:

readbig = function(file,samplesz,chunksz,nrec=0){
if(nrec <= 0)nrec = length(count.fields(file))
f = file(file,’r’)
on.exit(close(f))
use = sort(sample(nrec,samplesz))
now = readLines(f,1)
k = length(strsplit(now,’ +’)[[1]])
seek(f,0)

result = matrix(0,samplesz,k)

read = 0
left = nrec
got = 1
while(left > 0){

now = matrix(scan(f,n=chunksz*k),ncol=k,byrow=TRUE)
begin = read + 1
end = read + chunksz
want = (begin:end)[begin:end %in% use] - read
if(length(want) > 0){

nowdat = now[want,]
newgot = got + length(want) - 1
result[got:newgot,] = nowdat
got = newgot + 1

}
read = read + chunksz
left = left - chunksz

}
return(result)

}

If the number of records in the file, nrec, is specified as zero or a negative
number, the function calculates the number of lines in the file through a call
to count.fields; your operating system may provide a more efficient way of
achieving this, such as the wc -l command on Linux or Mac OS X, or the
find /c command on Windows, searching for the separator character which
will be present on each line. Suppose we have a comma-separated file called
comma.txt in the current directory. Under Windows, we could calculate the
number of lines in the file using

> nrec = as.numeric(shell(’type "comma.txt" | find /c ","’,
+ intern=TRUE))

2.8 Generating Data 27

while under UNIX-like systems, the command would be

> nrec = as.numeric(system(’cat comma.txt | wc -l’,
+ intern=TRUE))

To calculate the number of columns in the file, a single line is read using
readLines, and the strsplit function is called with an appropriate separator,
in this case one or more blanks. Then the file is repositioned to its origin with
the seek command, to prepare to actually read the data.

For optimum results, the chunksz argument can be adjusted for a given
situation, but most reasonable values will result in acceptable performance.

2.8 Generating Data

Even though one of the main motivations in learning or working with R is to
analyze existing data, sometimes it may be advantageous to create a data set
from within R. This would be necessary, for example, to carry out a simulation,
but may also be useful if you want to test a new technique or determine
if a program may be appropriate for a very large dataset. In the following
subsections, we’ll look at a number of ways in R to generate vectors of data
which can be used for simulations or testing programs when “real” data isn’t
available.

2.8.1 Sequences

To generate a sequence of integers between two values, the colon operator (:)
can be used. For example, to create a vector of the integers from 1 to 10, we
can use

> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

To get more control over the sequence, the seq function can be used. This
function allows an optional increment through the by= argument, as well as
more options for determining the length of the output sequence. In its simplest
form, it behaves like the colon operator:

> seq(1,10)
[1] 1 2 3 4 5 6 7 8 9 10

To create a vector of values from 10 to 100, each element separated by 5, we
could use:

> seq(10,100,5)
[1] 10 15 20 25 30 35 40 45 50 55 60 65 70 75
[15] 80 85 90 95 100

28 2 Reading and Writing Data

Alternatively, we can specify the length of the generated sequence instead of
providing the end point:

> seq(10,by=5,length=10)
[1] 10 15 20 25 30 35 40 45 50 55

One common use of sequences is to generate factors corresponding to the
levels of a designed experiment. Suppose we wish to simulate the levels for
an experiment with three groups and five subgroups, with two observations
in each subgroup, for a total of 30 observations. The gl function (mnemonic
for “generate levels”) has two required arguments. The first is the number of
different levels desired, and the second is the number of times each level needs
to be repeated. An optional third argument specifies the length of the output
vector. To generate a data frame composed of vectors representing the three
groups, five subgroups, and two observations, we could use gl as follows:

> thelevels = data.frame(group=gl(3,10,length=30),
+ subgroup=gl(5,2,length=30),
+ obs=gl(2,1,length=30))
> head(thelevels)
group subgroup obs

1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 1 3 1
6 1 3 2

Further control over the output of gl can be obtained with the optional
labels= argument. gl also accepts an ordered=TRUE argument to produce
ordered factors.

To create a data frame with the unique combinations defined by a col-
lection of sequences, the expand.grid function can be used. This function
accepts any number of sequences, and returns a data frame with one row for
each unique combination of the values passed as input. Alternatively, all of
the vectors can be passed to expand.grid as a single list. Suppose we wanted
to create a data frame with one observation for each combination of odd and
even integers between 1 and 5. We could use expand.grid as follows:

> oe = expand.grid(odd=seq(1,5,by=2),even=seq(2,5,by=2))
> oe
odd even

1 1 2
2 3 2
3 5 2
4 1 4
5 3 4
6 5 4

2.8 Generating Data 29

Note that the column generated from the first argument varies the most
quickly, and that the sequences passed to expand.grid need not be of the
same length. The number of rows in the output data frame will always be
equal to the product of the length of all the sequences passed to expand.grid.

One important use of data frames produced by expand.grid is to evaluate
a function over a range of parameter values. The apply function, discussed in
Section 8.4, is the most effective tool for this purpose. For example, suppose
we wanted to evaluate the function x2 + y2 for various values of x and y in
the range of 0 to 10. First, we can generate a matrix of input values using
expand.grid:

> input = expand.grid(x=0:10,y=0:10)

Now we can use apply to calculate the function for each row of the data frame
returned by expand.grid, and use cbind (Section 9.6) to combine it to the
input data:

> res = apply(input,1,function(row)row[1]^2 + row[2]^2)
> head(cbind(input,res))
x y res

1 0 0 0
2 1 0 1
3 2 0 4
4 3 0 9
5 4 0 16
6 5 0 25

2.8.2 Random Numbers

Function Distribution Function Distribution

rbeta Beta rlogis Logistic
rbinom Binomial rmultinom Multinomial
rcauchy Cauchy rnbinom Negative Binomial
rchisq Chi-square rnorm Normal
rexp Exponential rpois Poisson
rf F rsignrank Signed Rank
rgamma Gamma rt Student’s t
rgeom Geometric runif Uniform
rhyper Hypergeometric rweibull Weibull
rlnorm Log Normal rwilcox Wilcoxon Rank Sum

Table 2.2. Random number generators

If you are creating a dataset for a simulation, or to test a function in
R for which there is no real data available, R provides a large number of

30 2 Reading and Writing Data

random number generators, listed in Table 2.2. The first argument to all of
the random number generation functions is the number of random numbers
desired; additional arguments allow specification of the parameters of the
underlying distribution, and will vary depending on which distribution you
are working with. Consult the help file for the function for further details.

The state of the random number generator that underlies all of the func-
tions in Table 2.2 is stored in an object called .Random.seed. To create a
reproducible sequence, an integer can be passed to the set.seed function in-
suring that an identical stream of random numbers will be generated whenever
set.seed is set to the same value.

2.9 Permutations

2.9.1 Random Permutations

The sample function conveniently provides random permutations of either
a vector of values (if the first argument is a vector), or of indices starting
from one (if the first argument is a single number). With only one argument,
sample returns a vector of length equal to the number of elements (if the
argument is a vector) or the value of the argument if it is a number, sampling
without replacement, so that each element of the input will appear exactly
once in the output. Two optional arguments can override these defaults; the
size= argument will return a vector of the designated size, and the replace=
argument, if set to TRUE, will allow the possibility of elements of the input to
appear more than once in a given sample. If the size of the desired sample
is greater than the number of elements implied by the first argument, the
replace= must be set to TRUE. Finally, if some elements of the input should
be sampled at a higher probability than others, the optional prob= argument
can provide a vector of sampling probabilities.

2.9.2 Enumerating All Permutations

Since the sample function provides a random permutation of its input, it will
not be very effective in generating all possible permutations for a sequence,
since it is possible that some permutations will appear more often than others.
In cases like this, the permn function of the combinat package (available from
CRAN) can be used. Like sample, the first argument to permn is either a
vector or a single number. Called with a single argument, it returns a list
containing each possible permutation of the input sequence. The optional
fun= argument can be used to specify a function which will be applied to
each permutation in the output list. Since the number of permutations of n
elements is n! (n factorial), the size of the output from permn can be very large,
even for moderate values of n. The factorial function (or the fact function

2.10 Working with Sequences 31

of the combinat package) can be used to calculate how many permutations
exist.

If the number of permutations generated is too large to be accommodated
in memory, the numperm function of the sna package(available from CRAN)
can be used. This function accepts two arguments: the first represents the
length of the sequence, and the second represents the specific permutation de-
sired. Thus, if the entire set of permutations is too large to be held in memory,
the numperm function can be used inside a loop which successively increments
an index (the second argument to numperm) from 1 to factorial(n), where
n is the length of the sequence.

2.10 Working with Sequences

R provides several functions which are useful when working with sequences
of numbers. The table function, introduced in Section 8.1, can tabulate the
number of occurrences of each value in a sequence. To get just the unique
values in a sequence, the unique function can be used. Alternatively, the
duplicated function can be used to return a vector of logical values indicating
whether each value in the sequence is duplicated; !duplicated(x) will return
a logical vector which will be true for the unique values. In both cases, the
results will be in the order that the values are encountered in the vector being
studied.

The rle (run-length encoding) function can be used to solve a variety of
problems regarding consecutive identical values in a sequence. The returned
value from rle is a list with two components: values, a vector which contains
the repeated values that were found, and lengths, a vector of the same length
as values which tells how many consecutive values were observed. If there
are no repeated values, all of the elements of lengths will be 1:

> sequence = sample(1:10)
> rle(sequence)
Run Length Encoding
lengths: int [1:10] 1 1 1 1 1 1 1 1 1 1
values : int [1:10] 10 5 2 8 3 1 7 4 6 9

As an example of the use of rle, suppose we have a sequence of integers,
and we wish to know if there are 3 or more consecutive appearances of the
value 2. Considering the return value of rle, this will mean that 2 will appear
in the values component returned by rle with a corresponding entry in the
lengths component with a value of three or more:

> seq1 = c(1,3,5,2,4,2,2,2,7,6)
> rle.seq1 = rle(seq1)
> any(rle.seq1$values == 2 & rle.seq1$lengths >= 3)
[1] TRUE

32 2 Reading and Writing Data

> seq2 = c(7,5,3,2,1,2,2,3,5,8)
> rle.seq2 = rle(seq2)
> any(rle.seq2$values == 2 & rle.seq2$lengths >= 3)
[1] FALSE

To find the location within a sequence where a particular combination of
values and lengths occurs, the cumsum function can be applied to the
lengths component of the returned value of rle. The returned value from
cumsum will provide the index where each set of repeated values terminates;
thus by using the which function as an index into this vector, we can find the
end points of any desired run of values.

Continuing with the previous example, we can find the index into seq1
where a sequence of more than three values of 2 terminates:

> seq1 = c(1,3,5,2,4,2,2,2,7,6)
> rle.seq1 = rle(seq1)
> index = which(rle.seq1$values == 2 & rle.seq1$lengths >= 3)
> cumsum(rle.seq1$lengths)[index]
[1] 8

This indicates that the run of three or more values of 2 ended at position
8. To find the index where a run began, we can adjust the subscript used to
cumsum, taking special care to properly handle runs at the beginning of a
sequence:

> index = which(rle.seq1$values == 2 & rle.seq1$lengths >= 3)
> newindex = ifelse(index > 1,index - 1,0)
> starts = cumsum(rle.seq1$lengths)[newindex] + 1
> if(0 %in% newindex)starts = c(1,starts)
> starts

Due to the vectorization of these operators, multiple runs can be accommo-
dated by the same strategy:

> seq3 = c(2,2,2,2,3,5,2,7,8,2,2,2,4,5,9,2,2,2)
> rle.seq3 = rle(seq3)
> cumsum.seq3 = cumsum(rle.seq3$lengths)
> myruns = which(rle.seq3$values == 2 &
+ rle.seq3$lengths >= 3)
> ends = cumsum.seq3[myruns]
> newindex = ifelse(myruns > 1,myruns - 1,0)
> starts = cumsum.seq3[newindex] + 1
> if(0 %in% newindex)starts = c(1,starts)
> starts
[1] 1 10 16
> ends
[1] 4 12 18

2.11 Spreadsheets 33

For more complex situations, a logical expression can often be used as an
argument to rle. For example, to find the location of five or more successive
values greater than zero in a sequence of random numbers, we can use the
following approach:

> set.seed(19)
> randvals = rnorm(100)
> rle.randvals = rle(randvals > 0)
> myruns = which(rle.randvals$values == TRUE &
+ rle.randvals$lengths >= 5)
> any(myruns)
[1] TRUE
> cumsum.randvals = cumsum(rle.randvals$lengths)
> ends = cumsum.randvals[myruns]
> newindex = ifelse(myruns > 1,myruns - 1,0)
> starts = cumsum.randvals[newindex] + 1
> if(0 %in% newindex)starts = c(1,starts)
> starts
[1] 47
> ends
[1] 51
> randvals[starts:ends]
[1] 0.5783932 0.8276480 1.3111752 0.1783597 1.7036697

2.11 Spreadsheets

Spreadsheets, especially Microsoft Excel spreadsheets, are one of the most
common methods of distributing data, and R provides several ways to access
them. The simplest method, which may also be the most flexible, is to use
a spreadsheet program to write the data to a comma- or tab-separated file,
and then use the methods described in Section 2.2. This method is especially
useful when there is additional nondata material (like headings and notes) in
the spreadsheet, since such material can be removed by editing the file derived
from the spreadsheet.

There are some situations, however, where this may not be feasible. An
updated spreadsheet may need to be accessed every day, or an analysis may
require data that comes from several spreadsheets, or from several sheets
within a single spreadsheet. The next sections will look at ways of accessing
spreadsheets through R functions, without the need to dump them to files.

2.11.1 The RODBC Package on Windows

On the Windows platform, spreadsheets can be read directly using the
ODBConnectExcel function from the RODBC package, available from CRAN.

34 2 Reading and Writing Data

(For information about using RODBC to read databases, see Chapter 3.)
This function provides an interface to Excel spreadsheets using the SQL lan-
guage familiar to databases, and does not require Excel itself to be installed
on your computer.

The RODBC interface treats the various sheets stored in a spreadsheet file
as database tables. To use the interface, a connection object is obtained by
providing the pathname of the Excel spreadsheet file to odbcConnectExcel.
For example, suppose a spreadsheet is stored in the file
c:\Documents and Settings\user\My Documents\sheet.xls. To get a con-
nection object, we could use the following call:

> library(RODBC)
> sheet = ’c:\\Documents and Settings\\user\\My Documents

\\sheet.xls’
> con = odbcConnectExcel(sheet)

Note the use of double slashes in the file name; this is used because the
backslash has special meaning in R character strings, namely to inform R
that certain characters need to be treated specially. Often the first step in
working with spreadsheets in this way is to look at the names of the available
sheets. This can be done with the sqlTables command. Continuing with the
current example, we could find the names of the sheets in the sheet.xls
spreadsheet by issuing the command

> tbls = sqlTables(con)

and then examining tbls$TABLE NAME, the column of the returned data frame
that contains the sheet names. From this point on, each of the sheets can be
treated like a separate database table. Thus, to extract the contents of the
first sheet of the database to a data frame called data1, we could use the
following commands:

> qry = paste("SELECT * FROM",tbls$TABLE_NAME[1],sep=’ ’)
> result = sqlQuery(con,qry)

If the table name contains special characters, like spaces, brackets, or dollar
signs, then it needs to be surrounded by backquotes (‘). As a precautionary
measure, it may be advisable to include the backquotes in all queries:

> qry = paste("SELECT * FROM ‘",tbls$TABLE_NAME[1],"‘",sep="")
> result = sqlQuery(con,qry)

Most SQL queries will work using this method.

2.11.2 The gdata Package (All Platforms)

An alternative to using the RODBC package is the read.xls function of the
gdata package, available from CRAN. This function uses a module developed
for the scripting language perl (http://perl.org), and thus requires perl to
be installed on your computer. This will be the case for virtually all Mac OS

2.12 Saving and Loading R Data Objects 35

X, Unix, and Linux computers, but on Windows an installation of perl will
be necessary. (The perl installer and instructions can be found on the above-
referenced web site.) read.xls translates a specified sheet of a spreadsheet
to a comma-separated file, and then calls read.csv (see Section 2.3). Thus,
any option accepted by read.csv can be used with read.xls. The skip= and
header= arguments are especially useful to avoid misinterpreting headers and
notes as data, and the as.is=TRUE argument can be used to suppress factor
conversion.

2.12 Saving and Loading R Data Objects

In situations where a good deal of processing must be used on a raw dataset
in order to prepare it for analysis, it may be prudent to save the R objects
you create in their internal binary form. One attractive feature of this scheme
is that the objects created can be read by R programs running on different
computer architectures than the one on which they were created, making it
very easy to move your data between different computers. Each time an R
session is completed, you are prompted to save the workspace image, which is
a binary file called .RData in the working directory. Whenever R encounters
such a file in the working directory at the beginning of a session, it automat-
ically loads it making all your saved objects available again. So one method
for saving your work is to always save your workspace image at the end of
an R session. If you’d like to save your workspace image at some other time
during your R session, you can use the save.image function, which, when
called with no arguments, will also save the current workspace to a file called
.RData in the working directory.

Sometimes it is desirable to save a subset of your workspace instead of the
entire workspace. One option is to use the rm function to remove unwanted
objects right before exiting your R session; another possibility is to use the
save function. The save function accepts multiple arguments to specify the
objects you wish to save, or, alternatively, a character vector with the names
of the objects can be passed to save through the list= argument. Once the
objects to be saved are specified, the only other required option is the file=
option, specifying the destination of the saved R object. Although there is no
requirement to do so, it is common to use a suffix of .rda or .RData for saved
R workspace files.

For example, to save the R objects x, y, and z to a file called mydata.rda,
the following statements could be used:

> save(x,y,z,file=’mydata.rda’)

If the names of the objects to be saved are stored as character vectors (for
example, from the output of the objects function), the list= argument can
be used:

> save(list=c(’x’,’y’,’z’),file=’mydata.rda’)

36 2 Reading and Writing Data

Once the data is saved, it can be reloaded into a running R session with
the load command, whose only required argument is the name of the file to
be loaded. For example, to load the objects contained in the mydata.rda file,
we can use the following command:

> load(’mydata.rda’)

The load command can also be used to load workspaces stored in .RData files
in other directories by specifying their complete file path.

2.13 Working with Binary Files

While the natural way to store R objects is through the save command, other
programs may also produce binary files which, not surprisingly, use their own
format and are not readable by load. The readBin and writeBin functions
provide a flexible way to read and write such files. It should be noted that a
fairly complete knowledge of the format of a non-R binary file is required be-
fore readBin will be able to read it. However, for well-documented file formats,
readBin should be able to access the full information contained in the file.
Each call to readBin will read as many values as required, but a single call can
only read one type of data. The types of data that readBin can understand
include double precision numeric data, integers, character strings (although
the readChar and writeChar functions provide additional flexibility), com-
plex numbers, and raw data. Since multiple calls to readBin will have to be
used if there is a mixture of data types in the file, it is usually necessary to
pass a connection object to readBin, so that it will not automatically re-open
the file each time it is called.

As an example of the use of readBin, consider a binary file called
data.bin, which consists of 20 records, each containing one integer followed
by five double-precision values. Such a file could be produced, for example,
using the low-level write function in a C program. The first step is opening
a file connection:

> bincon = file(’data.bin’,’rb’)

Note that R will not allow access to files through readBin or writeBin unless
the file is opened in binary mode; thus the value of ’rb’ is passed to file to
specify the mode. (The “r” stands for read, and the “b” stands for binary.)

For efficiency’s sake, it’s a good idea to preallocate memory for the vector
or matrix which will hold the output from readBin. In this case, we can use a
20×6 matrix, and store the integer and five doubles in the rows of the matrix:

2.13 Working with Binary Files 37

> result = matrix(0,20,6)
> for(i in 1:20){
+ theint = readBin(bincon,integer(),1)
+ thedoubles = readBin(bincon,double(),5)
+ result[i,] = c(theint,thedoubles)
+ }
> close(bincon)

As always when opening a connection inside of R, it’s a good idea to close the
file when you’re done.

While no problems should be encountered if the data to be read was written
on a computer with the same architecture as the one on which it is to be
read, problems will sometimes occur if binary data from other architectures
is used. There are two ways of storing data on a computer, depending on
the order in which the bits of a binary value are stored; these two types
are known as “little-endian” and “big-endian”. Among some of the common
architectures, x86 and its derivatives are little-endian, while the PowerPC
and SPARC platforms are big-endian. readBin and writeBin each accept an
endian= argument, which take values of "big", "little", or "swap". (Note
that endianness is not an issue when using the save and load commands since
R uses the same format on all architectures for its saved objects.)

Writing binary files is essentially the reverse of reading them. writeBin
can only write vectors of character, numeric, logical, or complex values; in
particular lists or factors will need to be converted before writing.

As an example of using writeBin, consider a data frame constructed from
the state.x77 matrix:

> mystates = data.frame(name=row.names(state.x77),state.x77,
+ row.names=NULL,stringsAsFactors=FALSE)

Note that the stringsAsFactors=FALSE argument was used to avoid fac-
tor conversion which could cause writeBin to fail. For existing datasets, the
as.character function could be used to convert factors to character variables.

Suppose we wish to write a binary version of each row of the mystate
data frame to a file. When writeBin converts a character variable, it uses the
C programming language convention of terminating the string with a binary
zero. If the program to be reading the data requires fixed-width fields, the
sprintf function can be used to convert variable-length character values to
fixed length. For example, to make all the elements in mystate$name the same
length we can use the sprintf function as follows:

> maxl = max(nchar(mystates$name))
> mystates$newname = sprintf(paste(’%-’,maxl,’s’,sep=’’),
+ mystates$name)

Omitting the minus sign (-) would pad the strings at the beginning, instead
of the end.

38 2 Reading and Writing Data

Since R knows the size and types of its own objects, there is no need to
explicitly provide this information to writeBin, but if you want writeBin to
use a nonnative size for any of its output, the size= argument is available.
Note that using nonnative sizes may make it difficult or impossible to read a
binary file on other architectures.

We can now loop over the rows of mystates, first writing the character
value, then the numeric ones:

f = file(’states.bin’,’wb’)
for(i in 1:nrow(mystates)){

writeBin(mystates$newname[i],f)
writeBin(unlist(mystates[i,2:9]),f)

}

Note the use of unlist to convert a row of the data frame to a vector suitable
for writeBin.

2.14 Writing R Objects to Files in ASCII Format

While the binary format that R uses to store data (Section 2.12) is the natural
choice for saving data that will be used by R, there are several other ways
that the contents of R objects can be written to files. The idea of a human-
readable (nonbinary) file with data is very attractive, since most programs can
read files of this type, and, in the worst possible case, you can see what the
file contains by using an ordinary editor. R provides two functions for writing
objects to files in ASCII format; write, which is suitable for the same kinds of
data as scan (Section 2.1), and write.table, which is suitable for the types
of data which would normally be read using read.table (Section 2.2).

2.14.1 The write Function

The write function accepts an R object and the name of a file or connection
object, and writes an ASCII representation of the object to the appropriate
destination. The ncolumns= argument can be used to specify the number of
values to write on each line; it defaults to five for numeric variables, and one for
character variables. To build up an output file incrementally, the append=TRUE
argument can be used.

Note that matrices are internally stored by columns, and will be written to
any output connection in that order. To write a matrix in row-wise order, use
its transpose and adjust the ncolumn= argument appropriately. For example,
to write the values in the state.x77 matrix to file in row-wise order, the
following statement could be used:

> write(t(state.x77),file=’state.txt’,ncolumns=ncol(state.x77))

2.15 Reading Data from Other Programs 39

2.14.2 The write.table function

For mixed-mode data, like data frames, the basic tool to produce ASCII files
is write.table. The only required argument to write.table is the name of
a dataset or matrix; with just a single argument, the output will be printed
on the console, making it easy to test that the file you’ll be creating is in the
correct format. Usually, the second argument, file= will be used to specify
the destination as either a character string to represent a file, or a connection
(Section 2.1).

By default, character strings are surrounded by quotes by write.table;
use the quote=FALSE argument to suppress this feature. To suppress row
names or column names from being written to the file, use the row.names=
FALSE or col.names=FALSE arguments, respectively. Note that col.names=
TRUE (the default) produces the same sort of headers that are read using the
header=TRUE argument of read.table. Finally, the sep= argument can be
used to specify a separator other than a blank space. Using sep=’,’ (comma-
separated) or sep=’\t’ (tab-separated) are two common choices.

For example, to write the CO2 data frame as a comma-separated file with-
out row names, but with column headers and quotes surrounding character
strings, we could use

> write.table(CO2,file=’co2.txt’,row.names=FALSE,sep=’,’)

Similarly to read.csv and read.csv2, the functions write.csv and
write.csv2 are provided as wrappers to read.table, with appropriate op-
tions set to produce comma- or semicolon-separated files. In addition, the
write.fwf function in the gdata package, available from CRAN, provides a
similar functionality for writing R objects to a file using fixed-width fields.

2.15 Reading Data from Other Programs

It sometimes becomes necessary to access data which was created by a pro-
gram other than R, or to create data in a form that will be easily accessible
by some other program. When collaborating with others, they may have al-
ready created a saved object using some other program, or may want a dataset
you’re working with in a format that their favorite program can understand.
You may also encounter situations where some other program is more suit-
able for a particular task, and, once you’ve created a saved object with that
program, you’ll want to bring the results into R. In many cases, the most expe-
dient solution is to rely on human-readable comma-separated files to provide
access to data, since almost every program can read such files. If this is not
an option, or if there are a large number of datasets that need to be processed
or created, it may make sense to try to read data directly into R from the file
created by the other program, or to write data from R into a format more
suitable to some other program.

40 2 Reading and Writing Data

Function(s) Purpose

data.restore read data.dump output
read.S or saved objects from S version 3

may work with older Splus objects

read.dbf read or write saved objects
from DBF files (FoxPro, dBase, etc.)

read.dta read saved objects from Stata (versions 5-9)
write.dta create a Stata saved object

read.epinfo read saved objects from epinfo

read.spss read saved objects from SPSS
written using the save or export command

read.mtp read Minitab Portable Worksheet files

read.octave read saved objects from GNU octave

read.xport read saved objects in SAS export format

read.systat read saved objects from systat
rectangular (mtype=1) data only

Table 2.3. Functions in the foreign package

The foreign package, available from CRAN, provides programs to read
and write data in formats supported by a variety of different programs, sum-
marized in Table 2.3. None of the programs in the table require that the
foreign program be available on your computer; for example, you can read
and write Stata files (using read.dta and write.dta) even though you may
not have a copy of Stata on your computer. The functions that read files all
require a filename argument; those that write files require the data frame to be
written as the first argument and a destination filename as the second. Some
of the functions listed have additional options to control factor conversion and
variable name conventions; full details can be found in their respective help
files.

For getting data into other programs, the package also provides the
write.foreign program, which will generate two files: one containing the
data in a form that the foreign program can read, and the second containing
instructions that will allow the foreign program to read the data. This pro-
vides an alternative means of making data available to someone who wishes
to use a program other than R. Currently, write.foreign supports SPSS,
Stata, and SAS. The help page for write.foreign explains how to extend it
to support other programs.

To use write.foreign, provide the name of a data frame, along with
a filename where the data will be written (datafile=), and a second file-
name where the foreign program will be written (codefile=), along with the
package= argument indicating the target program. For example, to create
data and programs to read an R data frame called mydata into Stata, the
following call to write.foreign could be used:

2.15 Reading Data from Other Programs 41

> write.foreign(mydata,’mydata.txt’,’mydata.stata’,
+ package=’Stata’)

If mydata.stata is provided as input to Stata, with mydata.txt in the current
directory, it will load the data from mydata into Stata.

In the case of SAS, the read.ssd function in the foreign package will
create an R data frame from any SAS dataset (not just those in export format),
by writing and executing a SAS program to write the data in export format
and then calling read.xport. Thus, to use the program, SAS must be available
on your computer. If this is the case, the Hmisc package, available from CRAN,
also provides a number of programs useful for working with SAS datasets by
using SAS to process the data.

